ソフトウェアモデル論(2013年度) 第6回・2013/10/31

桑原 寛明 情報理工学部 情報システム学科

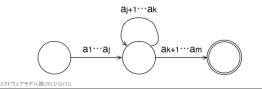
正規言語

(復習)

- 正規文法が生成する言語
- 有限オートマトンが受理できる言語
- 正規表現で表現できる言語

ある言語が正規言語か否か判定するにはどうす ればよいか

フトウェアモデル論(2013/10/31)


有限オートマトンが長い語を受理する場合

(復習

- 初期状態から受理状態に到達する間にループ が存在する
 - 同じ状態を2度以上通過する

部屋割り原理

• 状態数が n で語の長さが n 以上だと...

反復補題

(復習)

- 正規言語 L に対して n が存在して、|z|≥n なる 任意の z ∈ L について以下を満たすように z を uvw に分解できる
 - 1. $|uv| \le n$
 - 2. $|v| \ge 1$
 - 3. 0以上の任意のiについてuviw ∈ L
- 条件を満たす分解が1つでもあればよい

ソフトウェアモデル論(2013/10/31)

反復補題は必要条件

(復習)

- 反復補題は正規言語の必要条件 - 反復補題が成り立たなければ正規言語ではない
- 反復補題を満たす正規言語でない言語も存在 する

レポートその5

- L={a^m | m = n², nは自然数}が正規言語でないことを反復補題を用いて証明
- L が正規言語であると仮定して、反復補題が成り立たないことを示す
- 反復補題が成り立たないとは...
 - 適当な正整数 n に対して |z|≥n なる z を選び、z を z=uvw(ただし|uv|≤n、|v|≥1)となるように u, v, w に分解すると、どのように分解しても uv'w∉L となる i が存在する

フトウェアモデル論(2013/10/31)

レポートその5

- L が正規言語であると仮定する
- 適当な正整数 n に対し a^m(ただしm=n²)を選ぶ
- a^m=uvw に分解
 - ーただし u=ai、v=aj、w=ak
 - \sharp t i≥0, j≥1, k≥0, i+j≤n, i+j+k=n²
- 反復補題より uv²w∈L のはずである
- 本当にそうか?

ソフトウェアモデル論(2013/10/31

レポートその5

- |uv²w| = |aⁱa²^ja^k| = i+2j+k である
- j≥1 および i+j+k=n² より i+2j+k = n²+j > n²
- i≥0 および i+j≤n より j≤n
- つまり n² < |uv²w| < (n+1)² なので uv²w∉L
- これは uv²w∈L に反する
- よって L は正規言語ではない

/フトウェアエデル論(2013/10/31)

チューリング機械

ソフトウェアモデル論[2013/10/31

チューリング機械

- Alan Turing, 1930's
- 計算を機械的動作としてとらえたモデル

ソフトウェアモデル論(2013/10/31)

有限オートマトンとの違い

- 制限なし
 - テープへの書き込みも可能
 - 1マス読んだらヘッドを
 - 右へ1マス移動
 - 左へ1マス移動
 - 移動しない

ワトウェアモデル論(2013/10/31)

チューリング機械の動作

- 1. ヘッドの位置のマスの記号を読む
- 2. 読んだ記号に従って状態を遷移する
 - 終了状態へ到達したら終了
- 3. ヘッドの位置のマスに記号を書く
- 4. ヘッドの位置を
 - a. 1マス右へ移動する
 - b. 1マス左へ移動する
 - c. 移動しない
- 5. 1. **へ**戻る

/フトウェアモデル論(2013/10/31

チューリング機械の定義

 $M=(Q,\delta,\Sigma,\Gamma)$

Q: 状態の有限集合 $(\neq \emptyset)$

 $q_0 \in Q$:初期状態

 $q_{fin} \in Q$:終了状態

 δ : 遷移関数

 $(Q - \{q_{fin}\} \times \Gamma) \rightarrow Q \times \Gamma \times \{L, R, N\}$

Σ: 入出力記号の有限集合

Γ: テープ記号の有限集合

ワトウェアモデル論(2013/10/31)

テープ記号 Γ

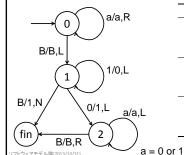
- テープのマスに書くことができる記号のすべて
- 空白のマスを表す記号 B を含む

ソフトウェアモデル論(2013/10/31

入出力記号Σ

- チューリング機械の入出力に利用できる記号の すべて
- Γの部分集合
- B は入出力に使えない
- 以下では Σ = {0,1}とする

/フトウェアモデル論(2013/10/31)


状態遷移関数 δ

- $\delta: (Q-\{q_{fin}\}) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, N\}$
- $\delta(q, a) = (q', b, L)$
 - 状態 q で記号 a を読んだ場合、
 - 1. 状態 q' に遷移し
 - 2. 記号 b を書込み (a を上書きし)
 - 3. ヘッドを左へ1マス移動する
 - R ならば右へ1マス移動
- N ならば移動しない
- 終了状態の遷移先はない

/フトウェアモデル論(2013/10/31

例: 関数 inc(x) = x + 1 を計算するTM

 $M_{inc} = (\{0, fin, 1, 2\}, \delta, \{0, 1\}, \{0, 1, B\})$

状態	記号	遷移関数値
0	0	(0, 0, R)
0	1	(0, 1, R)
0	В	(1, B, L)
1	0	(2, 1, L)
1	1	(1, 0, L)
1	В	(fin, 1, N)
2	0	(2, 0, L)
2	1	(2, 1, L)
2	В	(fin, B, R)

3

チューリング機械の計算状況

• 計算中のチューリング機械の様子は、制御部の状態、テープの内容、ヘッドの位置で決まる

 (q, ω, ω')

- q:制御部の状態
- ω:ヘッドより左側のテープの内容
- ω': ヘッドから右側のテープの内容 (ヘッド位置含む)

ソフトウェアモデル論(2013/10/31)

初期状況

(q₀, ...BB, xBB...)

- x∈Σ* が入力
- 例えば、(q₀,...BB, 111000BB...)
 - (q₀, B, 111000B) あるいは
 - (q₀, ε, 111000) とも書く

フトウェアモデル論(2013/10/31)

終了状況

 $(q_{fin}, \omega, \omega')$

- 終了状態に到達
- 正常終了状況
 - (q_{fin}, ...BB, yBB...)
 - -yが出力

ソフトウェアモデル論(2013/10/31)

チューリング機械の計算動作

- 計算状況を遷移関数に従って変えること
- q ∈ Q, u,v ∈ Σ*, a,b ∈ Σ とすると

$$(q, ub, av) \vdash \begin{cases} (q', u, ba'v) & \text{if } \delta(q, a) = (q', a', L) \\ (q', uba', v) & \text{if } \delta(q, a) = (q', a', R) \\ (q', ub, a'v) & \text{if } \delta(q, a) = (q', a', N) \end{cases}$$

• ⊢ が1回の計算動作を表す

/フトウェアモデル論(2013/10/31)

例: M_{inc} (例2.1)の計算動作

• 入力が101の場合

 $(0, B, 101B) \vdash (0, B1, 01B) \vdash (0, B10, 1B)$

 \vdash (0, B101, B) \vdash (1, B10, 1B) \vdash (1, B1, 00B)

 \vdash (2, B, 110B) \vdash (2, B, B110B) \vdash (fin, B, 110B)

/フトウェアモデル論(2013/10/31

チューリング機械の計算

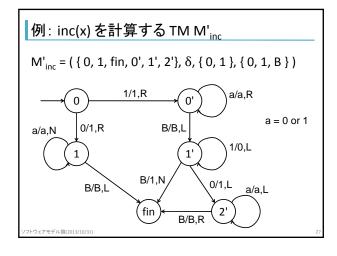
- 入力xに対するチューリング機械の計算
 - -xに対する初期状況から計算動作を繰り返す過程 の総称
- 計算列
 - 計算動作に伴って変化する計算状況の列
- 計算の正常終了
 - 正常終了状況に到達

/フトウェアモデル論(2013/10/31)

関数を計算するチューリング機械

- 関数 f を計算するチューリング機械 M f は Σ* 上の1変数(1引数) 関数
- x ∈ dom(f) ならば M に x を入力して実行すると f(x) を出力して正常終了
- x ∉ dom(f) ならば M に x を入力して実行すると正常終了しない
- 結果を M(x) と書く(出力以外に終了状況を含む)

/フトウェアモデル論(2013/10/31


例: inc(x)

• 正確には

 $inc(x) = egin{cases} n+1 \ {\it O} \ 2$ 進数表記 if x がある $n \in \mathbb{N}$ の 2 進数表記 未定義 otherwise

- x が正しい2進数でなければ未定義
 - 正しくない(定義域に含まれない)入力の場合は正常終了しない
 - 正しい2進数
 - 値が0でなければ最上位桁は1

フトウェアモデル論(2013/10/31)

