
A Parallel CellML Simulation Program Generator
with a Nonlinear Simultaneous Equation Solver

Yoshiharu Yamashita∗, Yuichiro Hayashi†, Naoki Soejima∗, Masanari Kawabata‡, Punzalan Florencio Rusty‡,
Takao Shimayoshi§, Hiroaki Kuwabara†, Yoshitoshi Kunieda† and Akira Amano‡

∗Graduate School of Science and Engineering, Ritsumeikan University, Shiga, Japan
†College of Information Science and Engineering, Ritsumeikan University, Shiga, Japan

‡College of Life Science, Ritsumeikan University, Shiga, Japan
§ASTEM Research Institute of Kyoto, Kyoto, Japan

I. I NTRODUCTION

In recent biological research, there has been increased
focus on the analysis of complex biological functions of the
human body using simulations [1]. Understanding the complex
mechanisms in the human body is important for medical
and drug development research. To analyze these complex
mechanisms, a multiscale approach on biological function
simulations is needed. In multiscale simulations, the tissue or
organ is represented as a collection of equations representing
a cell model. This poses a challenge in creating biological
function simulation since the simulations consist of hundreds
of complicated equations. To address this difficulty, a software
that automatically generates simulation program from various
cell models is necessary. This can be made possible with
the help of description languages to handle machine-readable
models [2][3]. One of the most famous model description
languages is CellML [2]. CellML can be used for describing
cellular function models and most of the models are provided
in the CellML repository [4]. A few software applications
also generate simulation program from model description
languages [5][6].

In doing complex biological function simulations, it is
necessary to consider coupling calculations between model
equations and fields. Furthermore, parallel programs also need
to be generated to deal with the complexity and computational
requirements of multiscale simulations. All of these has not
been available in a single software as of the writing of this
paper.

We previously proposed a simulation program generator that
handles coupling simulations and generates parallel programs
[7]. The current implementation of the code generator supports
explicit ordinary differential equations (ODE) and explicit
ODE numerical methods. However, some models consist of
implicit ODE and need implicit numerical methods such as
implicit Runge-Kutta. Methods which can solve nonlinear
simultaneous equations (NSE) are necessary to compute these
models. Therefore, the handling of NSEs and implicit ODEs
needs to be included in the simulation program generator. In
addition, an automatic parallelization in CUDA [8] for the
simulation programs of the implicit ODE and ODE methods
is needed.

Fig. 1. Simulation program generator.

In this paper, we propose methods to automatically generate
simulation programs that include an NSE solver. The simu-
lation programs are generated from CellML models and are
automatically parallelized in graphics processing unit (GPU)
using CUDA programming. The proposed methods can be
used to generate sequential and parallel simulation programs
of implicit ODE and ODE methods from the description
languages.

II. SIMULATION PROGRAM GENERATOR

Simulation involves the calculation of model equations with
help of numerical methods to solve differential equations.
Example of numerical methods are Euler method and Runge-
Kutta method. The basic elements of the simulation program
are these equations and numerical methods. The simulation
program generator generates the simulation program from
equations of cell model and ODE solving schemes (Fig.
1). The simulation program generator has two major stages.
The First stage is the mathematical analysis to construct
intermediate expressions. The intermediate expressions are
constructed from the equations of cell model and the ODE
solving schemes. The Second stage is the code generation
to generate the simulation program from these intermediate
expressions.

Fig. 2 shows the inputs and outputs of the simulation
program generator. The inputs are CellML [2], TecML (Time
Evolution Calculation Markup Language) [7] and RelML
(Relation Markup Language) [7]. CellML is widely used as
a description language for cellular function models. CellML
consists of metadata and mathematical equations. CellML



Fig. 2. Input and output of the simulation program generator.

provides equations and cell structure as metadata in a cell
model. The equations in CellML are described in MathML.
TecML is a description language to mathematically describe
ODE solving scheme such as the Euler method, Modified
Euler method and Runge-Kutta method. TecML offers flex-
ibility selecting ODE solving scheme depending on speed
and stability requirements. In TecML, five variable types and
two function types are defined. The variable types are diff-
var, derivativevar, arithvar, constvar, timevar and deltatimevar.
Diffvar is a differential variable, derivativevar is derivative
variable, arithvar is arithmetic variable (this is used for vari-
ables which can be mathematically substituted), constvar is
constant, timevar is time stamp, and deltatimevar is the time
step. The function types are diffequ and nondiffequ. Diffequ
is used for differential equations while nondiffequ is used for
nondifferential equations. RelML is a description language to
specify correspondence of variable types in CelML to types
defined in TecML. A CellML variable needs a TecML variable
type to use an ODE solving scheme described in TecML.
These variable types are not defined in CellML so RelML
assigns it to the the CellML variables.

The output of the generator is a simulation code. A number
of code generators (C language, Java, CUDA C [8]) are
prepared to support parallel and sequential execution envi-
ronments. A user can change an execution environment by
selecting a specific code generator.

The intermediate expressions are constructed in the mathe-
matical analysis from model equations described by CellML,
ODE solving scheme described by TecML and information
about types of CellML variables described by RelML. Fig.
3 shows expressions construction from TecML describing the
backward Euler method (an implicit ODE method), CellML
file of FHN (FitzHugh-Nagumo) model [9] and RelML file
of the FHN model. The intermediate expressions in Fig. 3
had to be simultaneously calculated, because the intermediate
expressions equal the following formulas:

xt+δ = xt + (xt+δ − x3
t+δ/3.0− yt+δ + a) ∗ δ (1)

yt+δ = yt + (b ∗ (xt+δ + c− d ∗ yt+δ)) ∗ δ (2)

xt+δ and yt+δ are computed at same time so an NSE solver
is necessary to simultaneously calculate them.

III. SOLVING NONLINER SIMULTANEOUS EQUATION

A. Finding strongly connected components and sorting equa-
tions

To generate a simulation program with an NSE solver,
finding strongly connected components in the equations and

Fig. 3. Constructing the intermediate expressions from CellML, TecML and
RelML.

Fig. 4. (a) Equation system with associated adjacency matrix in a model.
(b) Equation system after sorting and finding a strongly connected component
using Tarjan’s algorithm. (c) Intermediate Expressions after adapting ODE
solving scheme to the equation system of (b).

sorting equations are necessary [10]. We use Tarjan’s algo-
rithm [11] to find the strongly connected components and
sort the equations in Fig. 4 (a) (b). Intermediate expressions
are constructed from sorted equations adapted for the specific
ODE solving scheme in Fig. 4 (c).

B. Embedding an NSE solver in the simulation program

The code generator generates a simulation program with
NSE solvers from the intermediate expressions. The connected
components in the intermediate expressions are then calcu-
lated in the NSE solvers. Fig. 5 shows a code generation
process where the simulation program with the NSE solver
is generated from the intermediate expressions and connected
components. The program simultaneously calculatesexp2and
exp3 in an NSE solver. Even ifexp2 and exp3 are linear
equations, the program calculates them using the solver. This
allows the current code generator to support linear simultane-
ous equations.



Fig. 5. Simulation program including NSE solver.

IV. PARALLELIZATION IN CUDA

The computational complexity of a general biological func-
tion simulation program is enormous so it needs program
parallelization. Using parallel programs, we accomplished an
acceleration ratio of 66 between the GPU and the single CPU
computation time in a multi-cell simulation (cells numbers
from 10240 to 208000) [7]. In this section, we propose an
automatic parallelization in CUDA for one cell simulation pro-
gram including NSE solver from the intermediate expressions
and its dependency information. CUDA is NVIDIA’s parallel
computing architecture, which can attain high parallelism in
GPU [8]. In parallelizing only the NSE solver in CUDA, speed
up is difficult due to the loop dependency in the solver. In
this case, the effect of data transfer latency is larger than
the effect of parallelization. We can reduce ratio of the data
transfer by the parallelization of the whole program. The
generator not only parallelizes the NSE solver but the whole
computational process in one time step loop. Fig. 6 shows the
parallelized calculation and the CUDA functions that calculate
them. CUDA kernel2 uses at least two warps to concurrently
calculates the equations. Warp is a unit of CUDA calculation,
one warp consists of 32 threads. One warp calculatesexp2
andexp3, while another warp calculatesexp4, exp5, exp6and
exp7. The NSE solver ofexp4andexp5 is also parallelized.

V. D ISCUSSION

The proposed method to generate a simulation program
solving NSE from the description languages is considered to
be beneficial in terms of allowing users to generate simulation
codes easily. The NSE solver is necessary to incorporate
explicit and implicit ODE methods.

We also proposed another method which is the automatic
parallelization in CUDA of the simulation programs with
NSE solvers. The high parallelization reduces computational
complexity of a simulation program that contains implicit
ODE or uses implicit ODE methods. We consider that the
optimization of this generator offers more flexibility than gen-
eral optimization using static analysis. Since operations in this
generator are mathematical, operations such as replacement
algorithm can be used for optimization.

Future studies involve addition of experimental protocols,
coupling calculation and fields for an elaborate biological

Fig. 6. Parallel simulation program of Fig. 5.

function simulation.

VI. CONCLUSION

We proposed two methods to incorporate implicit ODE
and ODE methods in biological function simulations. The
first method is to directly generate a simulation program of
implicit ODE and ODE methods from description languages.
The second method is the automatic parallelization of the sim-
ulation program that contains an NSE solver. These methods
are considered to be beneficial for the generation of multiscale
simulation programs. Henceforth, we will implement these
methods in the simulation program generator.

REFERENCES

[1] P. J. Hunter, P. Robbins, and D. Noble, “The iups human physiome
project,” Pflügers Archiv European Journal of Physiology, vol. 445,
no. 1, pp. 1–9, Oct. 2002.

[2] A. A. Cuellar, C. M. Lloyd, P. M. F. Nielsenet al., “An overview of
cellml 1.1, a biological model description language.”Simulation, vol. 79,
no. 12, pp. 740–747, 2003.

[3] Y. Asai, Y. Suzuki, Y. Kido et al., “Specifications of insilicoml 1.0:
A multi-level biophysical model description language.”J Physiol Sci,
2008.

[4] (2011) Cellml model repository. [Online]. Available:
http://models.cellml.org/cellml

[5] A. Garny, D. Noble, P. J. Hunteret al., “Cellular open resource (cor):
current status and future directions.”Philosophical transactions. Series
A, Mathematical, physical, and engineering sciences, vol. 367, no. 1895,
pp. 1885–1905, May 2009.

[6] Y. Suzuki, Y. Asai, H. Okaet al., “A platform for in silico modeling of
physiological systems iii.”Conf Proc IEEE Eng Med Biol Soc, vol. 1,
2009.

[7] A. Amano, N. Soejima, T. Shimayoshiet al., “A general cellml
simulation code generator using ode solving scheme description,” in
Engineering in Medicine and Biology Society,EMBC, 2011 Annual
International Conference of the IEEE, 30 2011-sept. 3 2011, pp. 940
–944.

[8] NVIDIA CUDA Compute Unified Device Architecture - Programming
Guide, 2007.

[9] R. FitzHugh, “Impulses and physiological states in theoretical models
of nerve membrane,”Biophysical journal, vol. 1, 1961.

[10] P. Fritzson,Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1, 1st ed. Wiley-IEEE Press, Jan. 2004.

[11] R. Tarjan, “Depth-first search and linear graph algorithms,”SIAM
Journal on Computing, vol. 1, no. 2, pp. 146–160, 1972.


