
Secure Call and Return Instructions
for Mimicry Attack Detection

Yuuki Tominaga∗, Takehiro Kashiyama∗, Eiji Takimoto∗, Hiroaki Kuwabara∗,
Koichi Mouri∗, Shoichi Saito†, Tetsutaro Uehara‡ and Yoshitoshi Kunieda∗,

∗Ritsumeikan University, Shiga, Japan
†Nagoya Institute of Technology, Nagoya, Japan

‡The Research Institute of Information Security, Wakayama, Japan

I. I NTRODUCTION

Some kinds of Attack using program vulnerabilities (e.g.
buffer overflow vulnerability) change the control flow of
program to be contrary to the design of developers. If attacked
program runs in privilege level, secret information leakage or
falsification of data may be occurred. Many methods have been
proposed to detect the occurrence of buffer overflow using
host-based intrusion detection systems (IDSs) [1]. IDSs detect
malicious attacks by checking whether the behavior of running
program follows pre-defined correct ones. However, most
IDSs cannot detect malicious attacks when attacked program
behaves like unattacked one. Wagner et al. found that IDSs can
be avoided if the attack code imitates the original program [2].
Such kind of attack is called as “Mimicry Attack.” Kruegel et
al. show how to automate Mimicry Attacks using static binary
analysis [3]. This means it is easy to execute Mimicry Attacks.

In this paper, to detect Mimicry Attacks, we newly propose a
secure extension of call and return instructions of well-known
Intel x86 architecture and including any compatible processors
that has the stack frame. These extended instructions verify the
control data (the value of return address and frame pointer)
in the call stack. Extended call instruction saves the control
data to hidden area and extended return instruction checks the
control data in call stack and hidden area. This mechanism is
able to detect rewritten control data and protect the running
programs against Mimicry Attacks.

II. M IMICRY ATTACK

Mimicry Attacks rewrite all stack frames by using buffer
overflow to show another call stack which is possible to
appear while the program is running. Since rewritten stack
frames show the correct behavior of program, IDSs using static
analysis cannot detect Mimicry Attacks.

Fig.1 shows an example of Mimicry Attacks. In this
example,Function1 calls Function2 and Function4 ,
Function2 calls Function3 , Function4 calls
Function5 and Function5 calls Function6 . We
assumeFunction3 has a buffer overflow vulnerability.
In Fig.1, (1) shows the stack frames whileFunction3 is
running. Mimicry Attacks use vulnerability ofFunction3
to rewrite stack frames that showFunction6 is running
like Fig.1 (2). In this case, return instruction inFunction3
returns program control toFunction5 not to Function2 .

Function2Function1 Function4
Function3
Function5 Function6
BufferOverflowFunction call

Function3
Function2Function1

Function6Function5
Function1Function4MimicryAttackOriginal programstack status(1) Rewritten programstack status(2) 

Low Address

High Address
rewrite

Fig. 1. An Example of Mimicry Attack.

This illegal behavior is difficult to detect since there is no
record showing the control moves fromFunction3 to
Function5 after return executed. Traditional IDSs check
the order of function call by using stack frames whenever
any system calls are called. So, it is impossible to detect the
occurrence of Mimicry Attacks in the functions which use no
system calls.

III. E XTENDED CALL AND RETURN INSTRUCTIONS

In this section, we describe a secure extension of call and
return instructions as a method for Mimicry Attack detection.
Mimicry Attacks rewrite all control data on the call stack to
reflect that program reaches any specific functions through
the correct control flow. This makes possible to move the
program control to any functions as a legal behavior. Since
Mimicry Attacks need to rewrite control data, it is able to
prevent Mimicry Attacks by checking whether some control
data are rewritten when return instruction is executed.

The overview of our proposed method showed in Fig. 2.
This detection method is composed of a saving process and
a checking process of the control data. These processes are
called whenever function is called or returned. For implement



Function1 Function2 Function3

checkingprocess

control data
Saving the data foreach function call
Compare the current control data and savedcontrol data

saving process

Fig. 2. Overview of our proposed method.

these processes, the extension of call and return instruction are
utilized in our proposed system.

A. Extended call instruction

Extended call instruction saves the control data on the call
stack to some hidden area after traditional function calling
process. We suppose this hidden area is prepared on the
processor chip and should not be access any instructions
except for extended call and return. Saving process uses hidden
area as a stack. We call this stack “protection stack.”

There are two ways following to save the control data to
the protection stack. (1) The control data that is stacked on
the lowest address is saved to the protection stack whenever
extended call instruction is executed. (2) The hashing value
of all control data on the stack is saved to protection stack
whenever extended call instruction is executed. The detection
accuracy and the using memory are relationship as trade-off.
In case of (1), the detection accuracy is the highest, however
the amount of using memory is big. In case of (2), the amount
of using memory is smaller than way of (1), however this way
has a problem that overlook the attacks, when the function call
order is changed to another one that has same hashing value.

B. Extended return instruction

Extended return instruction checks whether some control
data are rewritten by comparing the data on real call stack
and protection stack before traditional returning process. This
checking process can detect Mimicry Attacks have been
prepared since Mimicry Attack need to rewrite the control
data before firing. Then, checking process kills the attacked
program by interruption before prepared attack fires.

IV. SIMULATION AND EVALUATION

A. Simulation

We implement our method as software simulation for proof
of concept. The saving and checking processes are imple-
mented as system calls. The hidden area for these processes
is allocated in the kernel space. To simulate extended call
instruction, some codes to invoke saving process are inserted
into the head of each function. Similarly, some codes to invoke

TABLE I
EVALUATION ENVIRONMENT .

CPU Intel Core Duo（1.86 GHz）
Memory 1 GB
OS Fedora 15
Kernel Linux Kernel 2.6.38

02
46
8

0 20 40 60 80 100

The checking process The saving process getpid[µs]

[Depth of the function call]
Fig. 3. Saving and checking time.

checking process are inserted into the last of each function to
simulate extended return instruction. These code insertion are
performed by using GCC option “-finstrument-functions.” We
use sysenter instruction to invoke system calls of saving and
checking processes.

B. Sample Mimicry Attacks

We prepare sample target programs which have buffer
overflow vulnerability or format string vulnerability [4]. These
vulnerabilities can be used for Mimicry Attacks. We attack
these programs by Mimicry Attacks like Fig.1. First, some
call stack showing specific function is invoked is dumped.
Next, the call stack is rewritten to mimic dumped stack by
using program vulnerabilities. Without our method, attacked
programs showed malicious behavior based on the rewritten
stack. On the other hand, with our method, attacked programs
are killed when Mimicry Attacks are detected.

C. Overhead of our approach

We expound the overhead toward the control data of evac-
uating and inspection process, and gzip and httpd, which are
practical applications. Table I shows the evaluation environ-
ment.

Overhead of saving and checking processes:We measured
the processing overhead in the saving process and the checking
process. The saving process and the checking process needs
to call system call for processing each process. To compare
the processing time without the system call processing time,
we also measured getpid system call. The results are shown
in Fig.3. The processing of getpid system call is the smallest
in common system calls. Most of the processing of getpid
system call is the mode change as moving from user mode
to kernel mode or from kernel mode to user mode. The main
processing of our proposed method is to extract the control
data between the highest address from the lowest address in



TABLE II
OVERHEAD OF GZIP PROCESS.

Run time (sec) Overhead
1． Normal 5.477 –
2． Proposed 5.619 2.74%

TABLE III
OVERHEAD OF HTTPD PROCESS.

Normal Proposed
Time per request(ms) Time per request(ms) Overhead

4 KB file 0.198 1.567 690.41%

stack. As a function call is repeated, the processing overhead
of extracting the control data will be big. It is shown in Fig.3.
The actual overhead of the program depends on the frequency
and depth of the function call.

Overhead with gzip:We apply our method to gzip appli-
cation (version 1.2.4), and confirm that the gzip application
works correctly without false positive. In addition, we mea-
sured the running time of gzip application with decompress of
Linux kernel source code. In Table II, we show the average
time of 1000 times measure. The total of function call was
51,843 times when running gzip program. The average of
function call’s depth was 8.421, and then it was cleared that
there are no recursive functions in gzip program. Running
time of application was 5.477 sec without our proposed
system, 5.619 sec with our proposed system. The percentage
of overhead by them was increased to 2.59%. In case of
decompress process the percentage of program was small,
because the time of function process was more than overhead
by them.

Overhead with httpd:We apply our method to httpd appli-
cation: (Apache HTTP Server 2.2.21), and confirm whether the
operation is correct, and measured the value of the overhead.
Because httpd is restless program as daemon, it is difficult
for us to measure the processing time from the beginning to
the end. So, using Apache Bench [5], we measured the time
required for the processing of one request and overhead. The
result is shown in table III. We measured with the machine run
by httpd and Apache Bench. The server machine is connected
to measuring machine with a straight cable. We measured the
time of processing of one request that 10,000 times issue 4
KB file which was accessed by 100 lines at the same time.
The running time of application is 0.198 msec without our
proposed system, 1.567 msec with our proposed system. In
case of httpd application, the running of one request was small
(0.198 msec). Therefore, the percentage of overhead became
to about 690%. It was cleared that httpd application’s overhead
(1.369 msec) was small compared with gzip application’s
overhead (142 msec).

V. D ISCUSSION

In the software simulation, when the function is called,
saving process is done, and when the function is returned
to calling function, checking process is done. In the saving
process of control data, the control data which is not influenced
by the buffer overflow is stored in protection stack in kernel
memory. The checking process is judged whether control data
is already rewritten is not, by comparing current control data
in the call stack with control data that is saved. From the result
of software simulation, we confirmed that Mimicry Attack
is detected certainly by our proposed system. It show that
the inspection of our proposed system is extremely precise
than another IDSs. Moreover, our proposed system can inspect
the rewriting of control data, and then defend against code
injection attack and return-into-libc attack.

When applying the proposed system to practical application,
the overhead return 2.74% to 690%. Sendmail applying by
Wagner’s method [6] indicated overhead more than one hour.
In case of implement the proposed system on the hardware,
the time will be short to call the system calls, so we think
that it can cut down the overhead very much. In addition, it is
possible to add security easily without changing the software,
so we think that there is a convenience.

VI. CONCLUSIONS

This paper proposes new detection method of Mimicry
Attacks which are undetectable by most existing IDSs. Our
proposed method consists of the saving which saves the reutrn
address and the checking process which inspects whether the
return address is not rewritten. The saving process is called
after traditional function calling process, the checking process
is called before traditional returning process. By implement
the simulation of our mechanism, we verified that it can detect
certainly Mimicry Attack. The overhead of execution time was
probed 2.74% increasing for gzip and 690% for httpd.

As future works, this mechanism should be implemented
into usual call and return instruction. As the saving process in
the calling sequence of this mechanism is only a duplication
of the existing call instruction, the amount of newly needed
hardware will be small and it can be assumed that the total
execution time overhead described above can be reduced.

REFERENCES

[1] S. Forrest, S. Hofmeyr, S. Somayaji, and T. Longstaff, “A sense of self
for unix processes,” inProceedings of 1996 IEEE Symposium on Security
and Privacy, 1996, pp. 120–128.

[2] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detec-
tion systems,” inProceedings of the 9th ACM conference on Computer
and communications security, 2002, pp. 255–264.

[3] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Automating
mimicry attacks using static binary analysis,” inProceedings of the 14th
conference on USENIX Security Symposium, 2005, pp. 11–26.

[4] U. Shankar, K. Talwar, J. Foster, and D. Wagner, “Detecting format string
vulnerabilities with type qualifiers,” inProceedings of the 10th conference
on USENIX Security Symposium, 2001, pp. 16–31.

[5] ApacheBench, “A complete benchmarking and regression testing suite,”
http://httpd.apache.org/.

[6] D. Wagner and D. Dean, “Intrusion detection via static analysis,” in
Proceedings of the 2001 IEEE Symposium on Security and Privacy, 2001,
pp. 156–168.


