
Congruence Properties for a Timed Extension of theπ-Calculus

Hiroaki Kuwabara Shoji Yuen Kiyoshi Agusa
Graduate School of Information Science, Nagoya University,
1 Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, 464-8603, Japan

{kuwabara,yuen,agusa}@agusa.i.is.nagoya-u.ac.jp

Abstract

We propose equivalences and preorders with congru-
ence properties for a timed extension of theπ-calculus. We
present a timed extension of syntax and basic operational
semantics to theπ-calculus. The derived timed bisimulation
relations are shown to be non-input congruent. The timed
bisimilarities equalize the bisimilar processes not only in
actions but also in timing of the actions. For the purpose of
modeling hard deadlines, we propose a more relaxed bisim-
ulation, calleddelay time orderthat relates a process be-
haves ‘faster’ in action to a process with the same com-
munication capability. We show that the delay time orders
are non-input congruent as well where the ‘time-insensitive’
composition is allowed. We illustrate our timed extension by
a simple example of a streaming server and a player client
where the network configuration may change dynamically.

1. Introduction

Nowadays real-time systems are quite common in soci-
ety in accordance with the rapid growth of the computer sys-
tems and network. An important requirement of real-time
systems isto react in the right timing. The system is re-
quired not only to respond to the environment in time but
also to wait till the appropriate moment. A real-time system
is usually built as the composition of components with tim-
ing constraints, where the whole system is formed by con-
currently running programs due to the reactive nature of the
components. This feature makes the system analysis diffi-
cult since each component behavior depends on other com-
ponents. The issues of timing constraints make the situation
even worse. In order for such (concurrent) real-time system
to correctly work, the close analysis of the behavior is es-
sential and very carefully chosen tests are necessary.

To deal with such a complex analysis of real-time sys-
tems, we propose a timed extension of theπ-calculus.π-
calculus[6, 7, 8] is known as a powerful abstract compu-
tation model for concurrent systems. Theπ-calculus pro-

vides the various techniques based on the algebraic proper-
ties. If the equivalences for a sub-component are preserved
in a context, it is possible to ensure the modularity for the
sub-module not to break the behavior of the whole system.
Following the semantics provided by the calculus, it is ex-
pected to improve the reliability of the whole system.

In this paper, the derived bisimulation equivalences
are shown to be a non-input congruence. The congru-
ence property ensures that adding time-out operations
does not change the system behavior as long as the length
of time for time-out is fixed, or it must have the identi-
cal binding relation for the time parameter in time-out
operation.

The derived bisimulations equalize processes that iden-
tically behave in passage of time. To see if a process being
composed by the composition operation satisfies the dead-
line specification as a single process, it is useful to define
a ‘relatively faster’ relation without changing the commu-
nication capability. For this purpose, we define a bisim-
ular relations calleddelay time ordersthat are shown to
be non-input congruences as well with the restriction of
‘time-insensitive composition’ for the delay time orders. We
demonstrate our timed extension by a simple example of
a streaming server and a player client where the network
for streaming may change dynamically under a timing con-
straint for delivering video streams from the server to the
client.

The structure of this paper is as follows. In section 2,
we define the syntax and operational semantics of timedπ-
calculus. Then, in section 3, we define bisimulation rela-
tions for timedπ-calculus and show these relations is con-
gruence for the restricted contexts. We define new order re-
lations in section 4, and describe an example of a streaming
system using timedπ-calculus and our order relation in sec-
tion 5. Next, in section 6, we discuss related works. Finally,
in section 7, we make some concluding remarks.

2. π-Calculus with Time

We introduce a primitive for passage of discrete time to
describe quantitative properties related to time and model
time-out using a choice operator. A process may wait for
a certain amount of time at least until the timer prefix
reaches to zero. Due to the maximal progress property that
τ -transition is prior to the time passage, the time-out opera-
tion is expressed by the combination ofτ -action and choice.

2.1. Syntax

We introduce a prefixt indexed by natural number to
theπ-calculus.t[m], called time-passing action, means time
waiting form time units.t is not a name.

We assumeName is an infinite set of names andI
is a set of names showing natural numbers. So,I =
{0, 1, . . .} ⊂ Name and i is a name which means natu-
ral numberi. We writeN = Name − I, N = {x|x ∈ N}
andL = N ∪ N . x̃ shows a list of names andxi is i-th
name ofx̃. P represents a set of the whole process expres-
sion of timedπ-calculus. In this paper, we assumex ∈ N ,
m ∈ I, n ∈ Name, k is a natural number, all elements of
ỹ is included inN , and all elements of̃z in Name.

Definition 1 A process expressionP is defined by the fol-
lowing BNF-like format:

π ::= x(ỹ) | x〈z̃〉 | τ | t[n]
P ::= M | P1|P2 | νxP | ! P
M ::= 0 | π.P | M1 + M2

¤
We writeAct for the set of actionsπ andx(z̃) which means
sending fresh names̃z via x.

Definition 2 For anyP = t[m].P ′, if m ∈ N andm is not
bound by any input action,P is inactive, written P↑. If P↑
then

(x(ỹ).P)
x , (x〈z̃〉.P)

x , (τ.P)
x , (t[n].P)

x ,

(P + Q)
x , (P | Q)

x , (νz P)
x , and (!P)

x

wherem 6= yi for all i. WhenP is not inactive,P is active,
written P 6↑. ¤

If P↑ holds, P cannot wait for time because time-
passing action that is prefix ofP or subprocess ofP does
not have natural number as argument. Activity of process
is dynamically changed. For example, supposem ∈ N ,
x〈m〉.0 |x(n).t[n].P is active sincen in t[n].P is bound
by input actionx(n). However, this process evolves to
0 | t[m].P that is inactive.

Definition 3 In x(z).P and νz P , the scope ofz is re-
stricted inP . z is a boundname in this case. And a name

is free if it is not bound. We writefn(P) for the set of
names that are free inP , andbn(P) for bound inP . Sup-
posen ∈ N , the set of free and bound names of an action
α are defined as follow:

α x(y) x〈z〉 τ t[n]
fn(α) {x, y} {x, z} ∅ {n}
bn(α) ∅ ∅ ∅ ∅

¤

n of t[n] is free name ifn ∈ N . We define substitution of
names. Substitution to the elements ofI is not permitted.

Definition 4 Substitution is a function fromN to Name.
Application ofσ to P is recursively defined as follows:

0σ
def
= 0

(x(ỹ).P)σ
def
= xσ(ỹσ).Pσ

(x〈z̃〉.P)σ
def
= xσ〈z̃σ〉.Pσ

(τ.P)σ
def
= τ.Pσ

(t[n].P)σ
def
= t[nσ].Pσ

(P | Q)σ
def
= Pσ | Qσ

(P + Q)σ
def
= Pσ + Qσ

(νxP)σ
def
= νxPσ

(!P)σ
def
= !Pσ

wherexσ ∈ N . We assume the bound names are renamed
appropriately to be different from the names of the substi-
tutions. We also write{y1, . . . , yn/x1, . . . , xn} for substi-
tutionσ. This meansyi is substituted forxi. ¤

For example,x〈5〉.0 |x(n).t[n].P evolves to0 | t[5].P . In
this case,5 is substituted forn.

We define structural congruence as follows.

Definition 5 Structural congruence, written≡, is the small-
est congruence on processes containing≡α and satisfying
the following axioms:

M1 + (M2 + M3) ≡ (M1 + M2) + M3

M1 + M2 ≡ M2 + M1

M1 + 0 ≡ M1

P1 | (P2 | P3) ≡ (P1 | P2) | P3

P1 | P2 ≡ P2 | P1

P1 | 0 ≡ P1

νz νw P ≡ νw νz P

νz 0 ≡ 0
νz (P | Q) ≡ P | νz Q z 6∈ fn(P)

! P ≡ P | ! P

¤

The time-passing actiont[i] means to wait fori time
units. For example, the processt[10].P evolves toP af-
ter 10 time units. The timeout is described using the time-
passing action, non-deterministic choice andτ action, for
examplea.P + t[5].τ.Q. This process waitsa for 5 time
units at most before performing actiona. If this process per-
formsa within 4 time units then evolves toP . After 5 time
units, if this process is able to performa then it evolves to
P or Q non-deterministically, otherwise becomesQ.

The intuitive meaning of other prefixes and operators are
shown follows:

• (Input)x(ỹ) : receiveỹ via x.

• (Output)x〈z̃〉 : sendz̃ via x.

• (τ action)τ : internal action.

• (Choice)P + Q : choose and perform executable pro-
cessP or Q. If both processes are executable choose
one process non-deterministically.

• (Parallel composition)P |Q : P and Q run concur-
rently.

• (Restriction)νxP : the scope of the namex is re-
stricted toP .

• (Replication)! P : infinite parallel composition ofP .

2.2. Operational Semantics by Labelled Transi-
tion

We define the labelled transition relation onP by the
rules in Figure 1 for actions and the rules in Figure 2
for time-passing.P 6↑ and Q 6↑ hold in these rules except
for ABORT. All elements appearing iñw are included in
Name.

P
α−→ P ′ means thatP evolves toP ′ by input/output

whenα 6= τ or internal action whenα = τ . P Ã P ′ means
P evolves toP ′ by time passing of 1 time unit. The PART

and REPT rule show thatτ transition is occurred prior to
time passing.

3. Timed Bisimilarity

We define the bisimulation for the timedπ-calculus.
These relations are supposed to satisfy following proper-
ties:

• The sequence of input/output action of both processes
is the same, and

• The timing that the process waits time and the length
of time waiting are same.

Definition 6 Timed strong bisimilarityis the largest sym-
metric relation,∼T , such that wheneverP ∼T Q,

• P↑ implies Q↑,

������� ���
	���� � ����������� � ����� ��� � �"!
	��#$� �%��& �'$(�)� �+*,	-/.�	�10 �32��4� 5 � �76�1� �

89�":<;>=?� �A@�1� �CB
�EDGFH@�)� �CB � 2�IJ;>=K�

�7@�)� �LB MON !QP�#JR?S N !
FT#VUXW�ZYFA@�)� �LB[YF
89�":<;�I�� FH@��� F B

�EDGFH@�)� F B � 2�IJ;�I��
FA@�)� FLB MON !QP�#\R?S N !Q�T#VUXW�ZY3FA@�)� �]YFCB

^\��:L:_;>=`� � �a� ��b��)� �CBcF �d&��� (��� FCB
�]YFe6�1� �CBfYFCB

^)=3�V8bg�;>=?� � �,&��� (�1� �CBcF ��&��� (�)� FCB -h.i S N !
FT#�jY3Fe6�)�lk -m!Q�LB[YFCB>#
^\��:L:_;�Ih� � ��& �� (�)� �CBcF �d����b���� FCB

�jYFe6�)� �CBfYFCB
^)=3�V8bg�;�I � � ��&��� (�)� �CBcF ��&��� (�)� FCB -h.i S N !
FT#�jY3Fe6�1�lk -m!��CB[YFCB>#

I\gJ8C� �H@�1� �CB n o Pqpi *9��r �\0k �<�H@�1�sk �<�CB
� � g � �

� �a� ' ��)� �CB -tpUE�
k -f� ��& 'u(�)� �CB

IJg � ;>2"^)� �
�A@�)� �CB

v � @�)� � B Y v �
I\g � ;Q^\��:C:w�

� �a����b��)� �CBx� ��&��� (�)� �CB B
v � 6�)� !Q�CBfY3�CB B>#LY v �

I\g � ;Q^)=�V8bgy�
� ��&��� (�)� �CBx� ��&��� (�)� �CB B -h.i S N !Q�z#v �e6�)� ! k -m!��CB[Y3�CB B>#{#LY v �

� � :Lg)�������
�H@�)� �CB
|�} ~d� � �H@�)� �CB

2��\��I3� �
n o �L�

�������{�{��)�

Figure 1. The rules for actions

���������	�
 ��������� � ��� ��� ��� �	��� ��� � � � �"!$#%�	� & � &

')(#%�*� +),.-/10 � �2� +%,.-/30 � � � � �*� +"4.-576 � �2� +"4.-576 � �
� ("8 �	� ���9�;:=<��><?:

�A@�<B�9�?:3@�<?:
���"C%�*� ���D� : <B�>< :
 �E�GFH<JIK�GFL<��9� : FH< :

CNMO���*� ���9� :
P + ��� P + � :

CNMQ�$�	� �B�9� :
 �E�RFL�SIKT ��� T � :
�U#%C (!$#%�	� ���9� :
 �E�2VW<YX� : VW< :<B�>< :

# � 8 M ')(#%�	� ���9� :
��� � ��� �2�9� :

Figure 2. The rules for time passing

• P
α−→ P ′ impliesQ

α−→ Q′ for someQ′ with P ′ ∼T
Q′, and

• P Ã P ′′ impliesQ Ã Q′′ for someQ′′ with P ′′ ∼T
Q′′. ¤

The timed strong bisimulation is a basis for equivalence
relation between processes. If processP is timed strong
bisimilar to processQ, P is not distinguishable fromQ
by the means of comparing their sequences of actions.
The timed strong bisimulation treats internal action, vis-
ible action and time-passing action equally. For example,
t[1].x.0 | t[1].y.0 is timed strong bisimilar tot[1].x.y.0 +
t[1].y.x.0. It is easy to check thatR is a timed strong bisim-
ulation, where

R = {(t[1].x.0 | t[1].y.0, t[1].x.y.0 + t[1].y.x.0),
(t[0].x.0 | t[0].y.0, t[0].x.y.0 + t[0].y.x.0),
(0 | t[0].y.0, y.0),
(t[0].x.0 |0, x.0),

(0 |0, 0)}

The weak version of timed bisimilarity is defined by ab-
stracting awayτ -transitions.

Definition 7 Weak transition relations are defined as fol-
lows:

• −→τ is the reflexive and transitive closure of
τ−→.

• α−→τ is−→τ
α−→−→τ for any actionα.

• Ãτ is−→τÃ−→τ . ¤

For convenience, we introduce the following notation:
bτ−→τ

is −→τ , and
bβ−→τ is

β−→τ for any actionβ exceptτ .

Definition 8 Timed weak bisimilarityis the largest sym-
metric relation,≈T , such that wheneverP ≈T Q,

• P↑ implies Q↑,

• P
α−→τ P ′ implies Q

bα−→τ Q′ for someQ′ with
P ′ ≈T Q′, and

• P Ãτ P ′′ implies Q Ãτ Q′′ for someQ′′ with
P ′′ ≈T Q′′. ¤

Lemma 1 ∼T and≈T are equivalence relations. ¤

We show∼T and≈T is preserved by all the operators
except for input action.

Definition 9 A non-input contextC is a context defined by
following BNF-like format:

C[·] ::= [·] | x〈z̃〉.C[·] | τ.C[·] | t[n].C[·]
| x〈z̃〉.C[·] + R | τ.C[·] + R

| R + x〈z̃〉.C[·] | R + τ.C[·]
| C[·]|S | S|C[·] | νxC[·] | !C[·]

whereR is a guarded summation andS is an arbitrary pro-
cess. ¤

Theorem 1 If P ∼T Q then C[P]∼T C[Q] for any non-
input contextC.

proof： By induction on contexts. We prove the case
C[·] = t[n].C ′[·]. If n is included inN then C[P]

x and
C[Q]

x hold. Supposen is included inI, written n, and

larger than 0. ThenC[P] α9 for anyα. It is suffice to show
thatt[n − 1].C ′[P]∼T t[n − 1].C ′[Q]. We show this by in-
duction onn. If n = 1, t[1].C ′[P] Ã t[0].C ′[P] and
t[1].C ′[Q] Ã t[0].C ′[Q]. Now t[1].C ′[P]∼T t[1].C ′[Q]
becauset[0].C ′[P]∼T t[0].C ′[Q] by induction hypothe-
sis on contexts andt[0].C ′[P]∼T C ′[P]. In the induction
step,t[n + 1].C ′[P] Ã t[n].C ′[P] and t[n + 1].C ′[Q] Ã
t[n].C ′[Q] with t[n].C ′[P]∼T t[n].C ′[Q] by induction hy-
pothesis on n. So, t[n + 1].C ′[P]∼T t[n + 1].C ′[Q].

¤

Theorem 2 If P ≈T Q then C[P]≈T C[Q] for any non-
input contextC.

proof： By induction on contexts. In the caseC[·] =
t[n].C ′[·], similar to theorem 1. ¤

The congruence for input prefix is not satisfied be-
cause the bisimilarity for any substitution is not hold. For
example, ifm ∈ N , t[m].a.0 andt[m].t[5].a.0 are bisim-
ilar because both processes are inactive. However,
(t[m].a.0){5/m} and(t[m].t[5].a.0){5/m} are not bisim-
ilar since the former needs 5 time units and the latter 10
to perform an actiona. We refine timed strong bisimula-
tion to be preserved by input action1.

Definition 10 P and Q are timed strong full bisimilar,
P ∼c

T Q, if Pσ ∼T Qσ for every substitutionσ. ¤
Lemma 2 Supposez ∈ N . If P{y/z} ∼T Q{y/z} for
anyy included infn(P)∪ fn(Q)∪{z}∪I thenx(z).P ∼T
x(z).Q. ¤
Theorem 3 ∼c

T is a congruence.

proof：SupposeP ∼c
T Q. If C 6= x(z).C ′[·] thenC[P] ∼c

T
C[Q] since∼c

T is included in∼T and the theorem 1.
We show thatC[P] ∼c

T C[Q] by induction on con-
texts whenC = x(z).C ′[·]. C ′[P] ∼c

T C ′[Q] by induc-
tion hypothesis. By the definition 10,C ′[P]σ{y/z} ∼T
C ′[Q]σ{y/z} for any substitutionσ and a namey included
in fn(P)∪ fn(Q)∪{z}∪I. x(z).C ′[P]σ ∼T x(z).C ′[Q]σ
by lemma 2. SoC[P] ∼c

T C[Q]. ¤
If we want to showx(z).P ∼T x(z).Q whenP ∼T Q

holds, it is suffice to show thatP{y/z} ∼T Q{y/z} for
any free names inP andQ and another name.

4. Delay Time Order Relation

Time constraints in the real-time systems are often given
either by upper bound of time needed for some actions or by
lower bound for delay time. In this section, we give an alter-
native order relation for ‘relatively faster’ processes based
on the length of delay time where processes only differs in
speed.

Definition 11 Delay time order relationis the largest rela-
tion, -T , such that wheneverP -T Q,

P↑ =⇒ Q↑
Q↑ =⇒ P↑

P
α−→ P ′ =⇒ ∃Q′. Q Ã∗ α−→ Q′ ∧ P ′ -T Q′

P Ã P ′ =⇒ ∃Q′. Q Ã Q′ ∧ P ′ -T Q′

Q
α−→ Q′ =⇒ ∃P ′. P

α−→ P ′ ∧ P ′ -T Q′

Q Ã Q′ =⇒ P -T Q′ ∨
(∃P ′. P Ã P ′ ∧ P ′ -T Q′)

1 Following [8] the definition of terms excludes the mixture of guarded
sums and processes as in CCS. This makes the weak bisimilarity con-
gruent for the choice operator.

¤
If P -T Q, both processes have equal transitions in the

sense of the strong bisimulation, whereP has less time-
passing transitions thanQ. WhenP can perform an action,
Q either performs the same action or waits without losing
the capability of the action. IfP waits,Q must wait as well
becauseP has less time-passing transitions thanQ. By the
same reason, ifQ is able to execute some action,P must
perform same action urgently.P may execute time-passing
action if the relation betweenP andQ is hold, whenQ per-
forms time-passing action. Note that-T compares the rel-
ative length of time passage before an action is observed.
The time passage after the action is counted for the follow-
ing action.

Lemma 3 P Ãn P ′ impliesQ Ãn Q′ andP ′ -T Q′ for
someQ′ if P -T Q.

proof： By induction onn. ¤
Delay time order relation is preserved by performing any
number of time-passing actions. We show-T is a preorder.

Lemma 4 -T is a preorder.

proof： Reflexivity is clearly satisfied by definition. We
show transitivity is satisfied. SupposeP -T Q -T R.
So, P↑ ⇒ Q↑ ⇒ R↑ and R↑ ⇒ Q↑ ⇒ P↑ clearly. Let
P

α−→ P ′, we haveQ Ã∗ α−→ Q′ with P ′ -T Q′ since
P -T Q. Now Q Ãn Q′′ α−→ Q′ for somen andQ′′, so
R Ãn R′′ andQ′′ -T R′′ for someR′′ sinceQ -T R and
lemma 3. And we haveR′′ Ã∗ α−→ R′ with Q′ -T R′ for
anyQ′. SoR Ã∗ α−→ R′ andQ′ -T R′. Let R Ã R′, then
Q -T R′ or ∃Q′. Q Ã Q′ ∧ Q′ -T R′ sinceQ -T R.
If Q -T R′ thenP -T Q -T R′, otherwiseP -T Q′ or
∃P ′. P Ã P ′ ∧ P ′ -T Q′ for anyQ′. If P -T Q′ then
P -T Q′ -T R′, otherwiseP ′ -T Q′ -T R′. ¤

We show that the delay time order relation is preserved
by all the operators except input action as well as the timed
bisimulation. There is a restriction on the processes com-
posed by parallel operator.

Definition 12 A non-input and time-insensitive contextC
is a context defined by following BNF-like format:

C[·] ::= [·] | x〈z̃〉.C[·] | τ.C[·] | t[n].C[·]
| x〈z̃〉.C[·] + R | τ.C[·] + R

| R + x〈z̃〉.C[·] | R + τ.C[·]
| C[·]|S | S|C[·] | νxC[·] | !C[·]

whereR is a guarded summation andS does not include
time-passing actionst[n]. ¤
Theorem 4 If P -T Q then C[P] -T C[Q] for any non-
input and time-insensitive contextC.

proof： We prove by induction onC. In the caseC[·] =
t[n].C ′[·], similar to theorem 1. We show the caseC[·] =

C ′[·] | R. SupposeR = {(C ′[P] | R,C ′[Q] | R) | P -T
Q}. R 6↑ holds sinceR does not include time-passing ac-
tions. By the same reason,R Ã R, soR Ã∗ R.

If C[P]
x then C ′[P]

x. If C ′[P]
x then C ′[Q]

x by
induction hypothesis, otherwise clearlyC[Q]

x. And vice
versa.

• SupposeC ′[P] | R
α−→ P ′ | R whereC ′[P] α−→ P ′.

We haveC ′[Q] Ã∗ Q∗ α−→ Q′ andP ′ -T Q′ for
someQ′ andQ∗ by hypothesis. HenceC ′[Q] | R Ã∗

Q∗ | R α−→ Q′ | R, so(P ′ | R,Q′ | R) ∈ R.

• SupposeC ′[P] | R
τ−→ P ′ | R′ whereC ′[P] α−→ P ′

andR
α−→ R′. We haveC ′[Q] | R Ã∗ Q∗ | R

τ−→
Q′ | R′ by hypothesis, so(P ′ | R′, Q′ | R′) ∈ R.

• Suppose C ′[P] | R
α−→ C ′[P] | R′.

We have C ′[Q] | R
α−→ C ′[Q] | R′, so

(C ′[P] | R′, C ′[Q] | R′) ∈ R.

• SupposeC ′[Q] | R Ã Q′′ | R where C ′[Q] Ã
Q′′. By the induction hypothesis,C ′[P] -T Q′′ or
∃P ′′. C ′[P] Ã P ′′ ∧ P ′′ -T Q′′. If C ′[P] -T Q′′

then(C ′[P] | R,Q′′ | R) ∈ R, otherwiseC ′[P] | R Ã
P ′′ | R hence(P ′′ | R, Q′′ | R) ∈ R.

• Similar whenC ′[P] | R Ã P ′′ | R, C ′[Q] | R
α−→

Q′ | R, C ′[Q] | R
τ−→ Q′ | R′, andC ′[Q] | R

α−→
C ′[Q] | R′.

SoR ⊆-T . ¤
The delay time order relation is violated in the com-

position of a process which includes time-passing actions
and an arbitrary process. For example, letP = a.0, Q =
t[1].a.0, R = t[2].b.0. Now P -T Q but P | R 6-T Q | R

sinceP | R a−→ 0 | R andQ | R Ã a−→ 0 | t[1].b.0. Q | R
needs more time-passing actions for next input or output or
τ action thanP | R whenP -T Q. If R has time-passing
actions, the length of waiting time ofR for next non-time-
passing action decreases. Composing a process which in-
cludes time-passing actions is not possible because the de-
lay time order relation have to be preserved after any tran-
sition occurred.

If P -T Q thenP andQ have same sequences of non-
time-passing actions. These sequences includeτ actions in-
visible to the environment. We give another delay time or-
der relation which focuses on only input and output actions.

Definition 13 Weak delay time order relationis the largest
relation,wT , such that wheneverP wT Q,

P↑ =⇒ Q↑
Q↑ =⇒ P↑

P
α−→τ P ′ =⇒ ∃Q′. Q Ã∗

τ
bα−→τ Q′ ∧ P ′ wT Q′

P Ãτ P ′ =⇒ ∃Q′. Q Ãτ Q′ ∧ P ′ wT Q′

Q
α−→τ Q′ =⇒ ∃P ′. P

bα−→τ P ′ ∧ P ′ wT Q′

Q Ãτ Q′ =⇒ P wT Q′ ∨
(∃P ′. P Ãτ P ′P ′ wT Q′)

¤

Lemma 5 wT is a preorder. ¤

Theorem 5 If P wT Q then C[P] wT C[Q] for any non-
input and time-insensitive contextC.

proof： By the induction on contexts. In the caseC[·] =
t[n].C ′[·], similar to theorem 1. ¤

Weak delay time order relation is not preserved by input
actions like the strong case. To showP wT Q, it is suffice to
showP ′ wT Q′ whereP ′ andQ′ are obtained by omitting
common parallel composite processes and prefixes except
input fromP andQ respectively since theorem 5.

5. Example

In this section, we describe a simple video streaming sys-
tem. This system consists of a server that delivers video and
a player that receives and plays video. A pair of routers con-
nect server and player. The routers work alternatively in or-
der to provide video frames to the player. The player at-
taches to one of the routers and gets video frames. If the
player does not receive next video frame in time, the player
switches to another router. This switching takes a given time
to start delivering video frames after the player connects to
the alternative router. The player must decompress received
video frames before playing because every video frames are
compressed.

The serverServer is described as follows:

Server
def
= (νg) (g | ! (g.v〈video〉.g)).

Server keeps sending video via namev. A namevideo
means one video frame. Every video frames differ for each
other, but we represent them by an identical namevideo for
simplicity.

Two routersRouteri are described as follows:

Router1
def
= ! attach(l).(νu, g)

(l〈2, u, rel1〉.v(video).u〈video〉.g
| ! (g.v(video).u〈video〉.g + g.rel1)).

Router2
def
= ! attach(l).(νu, g)

(l〈4, u, rel2〉.v(video).u〈video〉.g
| ! (g.v(video).u〈video〉.g + g.rel2)).

Routeri receives connection requests of player viaattach
and sends a time that is needed to start delivering, a name
u that is a channel for sending video frames, and a name
reli that is used to disconnect player. After that,Routeri

receives a video frame fromServer via v and sends it to
the player via new nameu. WhenRouteri fails to receive

a video non-deterministically,Routeri waits to be discon-
nected by the player. In this example, the length of time
needed before delivering ofRouter1 is 2 time units and
Router2 is 4.

The playerPlayer is described as follows:

Player
def
= (νl, g, h)

(attach〈l〉.h | ! h.l(n, v, r).t[n].g〈v, r〉
| ! g(v, r).
(v(video).t[1].play〈video〉.g〈v, r〉
+t[1].τ.attach〈l〉.r.h)).

P layer, first, requests to connect to one of the routers via
attach and receives vial (1) the time needed to start de-
livering video, (2) a namev for receiving video, and (3)
r used to disconnect router. After that,Player waits for
the time amount received vial and waits for delivering
video frames from connectedRouter. On receiving a video
frame,Player decompresses a compressed video frame for
1 time unit and plays it. IfPlayer cannot receive next video
frame within 1 time unit, it requests to connect to another
router viaattach again and disconnect attached router via
r.

The whole systemSystem is described as follows:

System
def
= (νattach, v, rel1, rel2)

(Server | Router1 | Router2 | Player).

We illustrate an execution trace.

System
τ−→

6Ã2 (νattach, v, rel1, rel2, g1, g2, g3, u, l, h)
(v〈video〉.g1 | ! g1.v〈video〉.g1 | Router1

| u〈video〉.g2 | ! (g2. · · ·) | Router2

| t[0].g3〈u, rel1〉 | ! h. · · · | ! g3(v, r). · · ·)
τ−→

3Ã (νattach, v, rel1, rel2, g1, g2, g3, u, l, h)
(v〈video〉.g1 | ! g1.v〈video〉.g1 | Router1

| rel1 | Router2 | ! h. · · ·
| t[0].play〈video〉.g3〈u, rel1〉 | ! g3(v, r). · · ·)

play−→ τ−→ (νattach, v, rel1, rel2, g1, g2, g3, u, l, h)
(v〈video〉.g1 | ! g1.v〈video〉.g1 | Router1

| rel1 | Router2 | ! h. · · ·
| (u(video). · · · .g3〈u, rel1〉 + t[1]. · · · .h)
| ! g3(v, r). · · ·)

Ã τ−→ (νattach, v, rel1, rel2, g1, g2, g3, u, l, h)
(v〈video〉.g1 | ! g1.v〈video〉.g1 | Router1

| rel1 | Router2 | ! h. · · ·
| attach〈l〉.rel1.h | ! g3(v, r). · · ·)

τ−→
6Ã4 (νattach, v, rel1, rel2, g1, g2, g3, u, l, h)

(v〈video〉.g1 | ! g1.v〈video〉.g1 | Router1

| u〈video〉.g2 | ! (g2. · · ·) | Router2

| t[0].g3〈u, rel2〉 | ! h. · · · | ! g3(v, r). · · ·)

τ−→
5Ã (νattach, v, rel1, rel2, g1, g2, g3, u, l, h)

(v〈video〉.g1 | ! g1.v〈video〉.g1 | Router1

| u〈video〉.g2 | ! (g2. · · ·) | Router2

| t[0].play〈video〉.g3〈u, rel2〉 | !h. · · ·
| ! g3(v, r). · · ·)

play−→ · · ·

This trace shows following behavior:

1. The player connected toRouter1, received video and
played it.

2. Timeout was occurred while the player is waiting next
video frame.

3. The player connected toRouter2 and got next video
frame and played it.

The delay from playing a video frame represented by
play to playing next frame is shortest when the player gets
next frame through same router. In this case, 1 time unit de-
lay is occurred. The longest delay is 6 time units when time-
out is occurred and the player connectsRouter2 instead of
Router1. These assertions are checked by showing follows:

(νv) (Server | ! v(video).t[1].play〈video〉) wT System

System wT (νv) (Server | ! v(video).t[6].play〈video〉)

By theorem 5, it is suffice to show

! v(video).t[1].play〈video〉
wT Router1 | Router2 | Player

and

Router1 | Router2 | Player

wT ! v(video).t[6].play〈video〉

becauseServer is ‘time-insensitive’.

6. Related Work

Lee andŽic proposed theπRT-calculus[3] which is a
real-time extension of theπ-calculus. They introduce the

timeout operator
t
. to theπ-calculus. This calculus is simi-

lar to our timedπ-calculus in respect of following features:

• Time is discrete.

• Actions and time passing are separated.

• Time is treated as name and transmitted on links.

The syntax and semantics ofπRT-calculus are defined, how-
ever relations between processes, for instance bisimilarity,
are not defined.

Berger and Honda extendedπ-calculus by introduc-
ing timers, message loss, sites and so on and described
the two phase commit protocol[4]. The timer is a process

timert(Q, R). The behavior is defined by the time step-
per function and operational semantics. Applying the time
stepper function to process means time passing. This cal-
culus do not have an action meaning time passing. One
time unit passes when a process perform an input or out-
put orτ action.

Chen extendedπ-calculus with dense time[2]. He de-
fines a weak bisimulation relation and constructs a complete
proof system for weak congruence. This weak bisimulation
is preserved by choice operator unlike our weak bisimu-
lation. He investigates equivalence relations between pro-
cesses, however dose not propose order relations for ‘faster’
processes.

In the context of CCS, the notion of ‘faster’ processes
has been proposed[9, 10, 11]. Satoh proposed a prebisim-
ulation for timed calculus. The orders by Hennessy-Kumar
and Natarajan-Cleaveland countτ -transition, where smaller
number ofτs is faster. Our approach is following these pre-
vious literature extended for theπ-calculus aiming at char-
acterizing more dynamic software behavior.

7. Conclusion

In this paper, we proposed a timed extension of theπ-
calculus. The derived bisimilarities are shown to be a non-
input congruence. The derived timed bisimulation equiva-
lences characterize the equal behavior both in actions and
in timing of the actions. Next, we defined the delay time or-
der relations in order to relate processes only different in
speed. If an implementation is proved to be faster than the
specification, the implementation is proved to satisfy the
deadline constraints following the classical way to prove the
implementation[5]. In our timed extension, the time-out op-
eration is modeled by the choice with theτ -prefix. The non-
input congruence property ensures that adding the time-out
operation does not break the delay time order provided the
time-amount for time-out is fixed. In this respect, the weak
delay time order relation is a useful foundation for proving
the correctness in practical use. The weak delay time or-
der relation is congruent for contexts whose composition is
‘time-insensitive’ in the sense that time-passing actions do
not change the status of composing processes. This restric-
tion is not generally a big obstacle in the server/client sys-
tems because a server generally is time-insensitive where it
process the requests from clients at any time as shown by
the example.

For the future work, besides the relative speed of pro-
cesses, it is often useful to consider the relation where a
process accepts an event for a longer time than the other. A
process that accepts an event between 5 second and 15 sec-
ond after the start-up is more ‘generous’ than a process that
accepts the event between 7 second and 12 second after the
start-up. The delay time order relation is violated when the

length of time either process waits for becomes shorter or
longer than another process with progression. It is why this
relation is not enough to use for verifying the real-time sys-
tems. We are interested in methods to verify using the test-
ing equivalence[1] and so on.

References

[1] M. Boreale and R. D. Nicola. Testing Equivalence for Mo-
bile Processes.Information and Computation, 120:279–303,
1995.

[2] J. Chen. A Proof System for Weak Congruence in Timedπ
Calculus. Technical report, Laboratoire d’Informatique Fon-
damentale d’Orl’eans, Universit’e d’Orl’eans, France, 2004.

[3] J. Y. Lee and J.̌Zic. On Modeling Real-time Mobile Pro-
cesses. InProceedings of the twenty-fifth Australasian con-
ference on Computer science, pages 139–147. Australian
Computer Society, Inc., 2002.

[4] M.Berger and K.Honda. The Two-Phase Commitment Pro-
tocol in an Extendedπ-Calculus. InPreliminary Proceed-
ings of EXPRESS ’00, 2000.

[5] R. Milner. Communication and Concurrency. Cambridge
University Press, 1988.

[6] R. Milner. Communication and Mobile Systems: theπ-
Calculus. Cambridge University Press, 1999.

[7] R. Milner, J. Parrow, and D. Walker. A Calculus of mobile
processes, Part I/II.Information and Computation, 100:1–
77, 1992.

[8] D. Sangiorgi and D. Walker.Theπ-calculus: A Theory of
Mobile Processes. Cambridge University Press, 2001.

[9] S.Arun-Kumar and M. Hennessy. An Efficiency Preorder for
Processes.Acta Informatica, 29(8):737–760, 1992.

[10] I. Satoh and M. Tokoro. Asynchrony and Real-time in Dis-
tributed Computing. InProceedings of Parallel Symbolic
Computing Workshop, volume 748 ofLNCS, pages 318–330.
Springer, 1993.

[11] V.Natarajan and R. Cleaveland. An Algebraic Theory of Pro-
cess Efficiency. InLICS ’96, pages 63–72. IEEE Computer
Society Press, 1996.

A. The Details of Trace in Example

In section 5, we illustrate an outline of execution trace of
System that is a simple video streaming system. We show
the details of some steps of this trace in this section.

Firstly, communication viag in Server occurs.

System
τ−→ (νattach, v, rel1, rel2, g1)

(v〈video〉.g1 | ! g1.v〈video〉.g1

| Router1 | Router2 | Player)
Router1 andPlayer communicate viaattach.

τ−→ (νattach, v, rel1, rel2, g1, g2, g3, u, l, h)
(v〈video〉.g1 | ! g1.v〈video〉.g1

| l〈2, u, rel1〉.v(video).u〈video〉.g2

| !(g2.v(video).u〈video〉.g2 + g2.rel1)
| Router1 | Router2

| h | ! h.l(n, v, r).t[n].g3〈v, r〉
| ! g3(v, r).(v(video).t[1].play〈video〉.g3〈v, r〉

+t[1].τ.attach〈l〉.r.h))
Communication viah occurs.

τ−→ (νattach, v, rel1, rel2, g1, g2, g3, u, l, h)
(v〈video〉.g1 | ! g1.v〈video〉.g1

| l〈2, u, rel1〉.v(video).u〈video〉.g2

| !(g2.v(video).u〈video〉.g2 + g2.rel1)
| Router1 | Router2

| l(n, v, r).t[n].g3〈v, r〉 | !h.l(n, v, r).t[n].g3〈v, r〉
| ! g3(v, r).(v(video).t[1].play〈video〉.g3〈v, r〉

+t[1].τ.attach〈l〉.r.h))
Communication vial occurs.

τ−→ (νattach, v, rel1, rel2, g1, g2, g3, u, l, h)
(v〈video〉.g1 | ! g1.v〈video〉.g1

| v(video).u〈video〉.g2

| !(g2.v(video).u〈video〉.g2 + g2.rel1)
| Router1 | Router2

| t[2].g3〈u, rel1〉 | ! h.l(n, v, r).t[n].g3〈v, r〉
| ! g3(v, r).(v(video).t[1].play〈video〉.g3〈v, r〉

+t[1].τ.attach〈l〉.r.h))
Communication viav occurs.

τ−→ (νattach, v, rel1, rel2, g1, g2, g3, u, l, h)
(g1 | ! g1.v〈video〉.g1

| u〈video〉.g2

| !(g2.v(video).u〈video〉.g2 + g2.rel1)
| Router1 | Router2

| t[2].g3〈u, rel1〉 | ! h.l(n, v, r).t[n].g3〈v, r〉
| ! g3(v, r).(v(video).t[1].play〈video〉.g3〈v, r〉

+t[1].τ.attach〈l〉.r.h))
Communication viag1 occurs.

τ−→ (νattach, v, rel1, rel2, g1, g2, g3, u, l, h)
(v〈video〉.g1 | ! g1.v〈video〉.g1

| u〈video〉.g2

| !(g2.v(video).u〈video〉.g2 + g2.rel1)
| Router1 | Router2

| t[2].g3〈u, rel1〉 | ! h.l(n, v, r).t[n].g3〈v, r〉
| ! g3(v, r).(v(video).t[1].play〈video〉.g3〈v, r〉

+t[1].τ.attach〈l〉.r.h))
Wait 2 time units.

Ã2 (νattach, v, rel1, rel2, g1, g2, g3, u, l, h)
(v〈video〉.g1 | ! g1.v〈video〉.g1

| u〈video〉.g2

| !(g2.v(video).u〈video〉.g2 + g2.rel1)
| Router1 | Router2

| t[0].g3〈u, rel1〉 | ! h.l(n, v, r).t[n].g3〈v, r〉
| ! g3(v, r).(v(video).t[1].play〈video〉.g3〈v, r〉

+t[1].τ.attach〈l〉.r.h))
τ−→ · · ·

