ソフトウェアモデル論(2010年度) 第10回・2010/11/29

桑原 寛明 情報理工学部 情報システム学科

命題

- 内容の真偽が確定できる文
 - 加算はチューリング機械計算可能である
 - 1と10は等しい
 - 情報理工学部の学生数は2233人である
- 命題同士が関連することもある
 - 風が吹く
 - 風が吹くと桶屋が儲かる
 - ⇒ 桶屋が儲かる

ソフトウェアモデル論(2010/11/29)

論理学

- 命題の集まりについて、ある命題の真偽が他 の命題の真偽にどのように影響するか、命題 間の関連を系統的に調べる学問
- 数理論理学
 - 数学における形式手法、記号的手法を用いて行う 論理学

ソフトウェアモデル論(2010/11/29)

命題変数

- 命題を表す変数
 - 命題が述べる内容には興味がない
 - 興味があるのは命題の真偽と命題間の関係
- 特に、原子命題を表す記号
 - 原子命題: 最も基本的な命題

ソフトウェアモデル論(2010/11/29

論理式

- 命題を表す記号列
- 1. 命題変数は論理式である
- 2. P,Q が論理式であれば

- (¬P)

否定、~でない

(PΛQ)

連言、かつ

- (PVQ)

選言、または

– (P→Q)

含意、ならば

は論理式である

1. 1. と 2. から作られるものだけが論理式である

ソフトウェアモデル論(2010/11/29

意味論

- 論理式の意味とは論理式の真理値
 - 真 or 偽
- ・以下の2つから決まる
 - 命題変数の真理値
 - 論理演算子(¬、∧、∨、→)の意味

ワトウェアモデル論(2010/11/29)

解釈

- 命題変数の真理値を定義する関数
 - true:真、false:偽
- 解釈を I、命題変数の集合を Σ とすると
 I: Σ → { true, false }
- すべての p∈Σ に対して I(p) = true または I(p) = false

/フトウェアモデル論(2010/11/29

解釈の例

Σ={p,q,r}とすると解釈は8通りあり得る

	р	q	r			
I ₁	true	true	true			
I_2	true	true	false			
I_3	true	false	true			
I_4	true	false	false			
I ₅	false	true	true			
I ₆	false	true	false			
I ₇	false	false	true			
l _s	false	false	false			
	I ₂ I ₃ I ₄ I ₅ I ₆ I ₇	I_1 true I_2 true I_3 true I_4 true I_5 false I_6 false I_7 false	I_1 true true I_2 true true I_3 true false I_4 true false I_5 false true I_6 false true I_7 false false			

論理演算子の意味

- 真理値関数によって定義
 - 以下の Not, And, Or, Imp がそれぞれ否定、連言、 選言、含意の意味を定義

Р	Not(P)	Р	Q	And(P,Q)	Or(P,Q)	Imp(P,Q)
true	false	true	true	true	true	true
false	true	true	false	false	true	false
	_	false	true	false	true	true
		false	false	false	false	true

論理式の意味

- 命題変数の集合 Σ
- 解釈 I のもとでの論理式 P の真理値 V_I(P)
 - 解釈は命題変数の真理値を決める

 $V_I(P) = egin{cases} I(p) & P \, \, ext{が命題変数} \, p \in \Sigma \, \, \text{の場合} \ & \operatorname{Not}(V_I(Q)) & P \, \, ext{が} \, \neg Q \, \, \text{の場合} \ & \operatorname{And}(V_I(Q), V_I(R)) & P \, \, ext{が} \, Q \wedge R \, \, \text{の場合} \ & \operatorname{Or}(V_I(Q), V_I(R)) & P \, \, ext{が} \, Q \vee R \, \, \text{の場合} \ & \operatorname{Imp}(V_I(Q), V_I(R)) & P \, \, ext{が} \, Q \to R \, \, \text{の場合} \end{cases}$

フトウェアモデル論(2010/11/29)

モデル

- 論理式集合 Φ
- 解釈Ⅰ
- Iが Φ のモデルである

iff

Φ に含まれるすべての論理式 PEΦ について I(P) = true

ξΦ あるいは | ξΦ と書く

/フトウェアモデル論(2010/11/29

論理的帰結

- 論理式集合 Φ
- 論理式 P
- PはΦの論理的帰結である

iff

すべての解釈 I について、I が Φ のモデルならば I は P モデルでもある

Φ + I と書く

ワトウェアモデル論(2010/11/29)

トートロジー(恒真式)

- 論理式 P
- Pはトートロジーである iff すべての解釈 | に対して | FP
-) confinition of city
- 任意の解釈のもとで真になる
- 例えば、pV¬p はトートロジー

/フトウェアモデル論(2010/11/29)

充足可能

- 論理式集合 Φ に対してモデルが存在するならば Φ は充足可能である
- 論理式 P に対してモデルが存在するならば P は充足可能である
- 充足可能でなければ充足不能

ワトウェアモデル論(2010/11/29)

恒偽式

- 充足不能な論理式
- どのような解釈のもとでも偽である
- 例えば、p∧¬p は恒偽式

ソフトウェアモデル論(2010/11/29

論理的帰結の判定

- 論理式 P が論理式集合 Φ の論理的帰結であるか判定したい
- 手順?
 - 1. すべての解釈について Φ のモデルであるか調べる
 - 2. Φ のモデルであるすべての解釈のもとで P が真であるか調べる
- ΦとPに含まれる命題変数が n 種類ならば 2ⁿ 通りの解釈について調べなければならない
 ⇒ 効率が悪い

ソフトウェアモデル論(2010/11/29)

証明系

- 論理式が論理式集合の論理的帰結であること を、論理式(の列)に対する機械的な操作のみ によって調べる方法
 - 論理式の意味(真理値)を考えない
 - 判定アルゴリズムの一種とみなしてもよい
- 証明系は、論理式(の集合)から別の論理式を 導出する推論規則の集合として定義される

ソフトウェアモデル論(2010/11/2:

証明系の種類

- 演繹系
 - 前提の論理式集合から結論の論理式が導出される まで推論を繰り返す証明系
 - 例えば、LK や自然演繹など
- 反駁系
 - 前提の論理式集合に結論の否定を加えて推論し、 否定的な結果が得られたら成功とする証明系
 - 例えば、分解証明系など

フトウェアモデル論(2010/11/29)

シークェント

- P₁, ..., P_n ⊢ Q
- 論理式集合 { P₁, ..., P_n } から推論を開始し、論 理式 Q が得られることを表す
 - -{P₁, ..., P_n}: 前提、前件
 - -Q:結論、後件
- 推論を繰り返す(推論規則を繰り返し適用する) 過程が証明

推論規則の形式

- 各前提と結論は論理式
- 前提1から前提nまでのn個の論理式から結論 の論理式を推論(導出)する

$$\frac{P \quad Q}{P \wedge Q} \wedge i$$

証明系の健全性

- 論理式集合 Φ から論理式 P が導出(証明)でき るならば P は Φ の論理的帰結である
 - -Φ⊢PならばΦ⊧P
- 証明系が健全でない場合、証明できたことを信 じてよいかわからない
 - 証明できても論理的帰結でないことがある
 - ⇒ 証明になっていない

証明系の完全性

- 論理式 P が論理式集合 Φ の論理的帰結なら ばΦからPを導出(証明)できる
 - -Φ ⊧ P ならば Φ ⊢ P
- 証明系が完全であれば、すべての論理的帰結 を証明できる
 - 完全でなければ証明できないものがある

自然演繹

• 以下の推論規則からなる証明系

選言に関する推論規則

$$\frac{P \quad Q}{P \wedge Q} \wedge \mathrm{i} \qquad \frac{P \wedge Q}{P} \wedge \mathrm{e}_1 \qquad \frac{P \wedge Q}{Q} \wedge \mathrm{e}_2$$

- - 演算子を導入
- - 演算子を除去

p∧q⊢q∧p の証明

$$\frac{\frac{p \wedge q}{q} \wedge e_2 \quad \frac{p \wedge q}{p} \wedge e_1}{\frac{q \wedge p}{} \wedge i} \wedge i$$

ソフトウェアモデル論(2010/11/29)

証明木(導出木)

- シークェントの前提から結論を推論する過程を 木構造で図示したもの(ただし根が下)
- 木構造の節点は論理式
 - 葉が前提
 - 根が結論
- 葉を除く各節点は、子節点の論理式に推論規 則を適用して得られる論理式

フトウェアモデル論(2010/11/20)

二重否定に関する推論規則

$$\frac{P}{\neg \neg P} \neg \neg i \qquad \frac{\neg \neg P}{P} \neg \neg e$$

¬¬i は他の規則を用いて導出できる(例5.20)- なくても大丈夫

ソフトウェアモデル論(2010/11/29)

含意に関する推論規則

$$\begin{array}{c} [P] \\ \vdots \\ Q \\ \hline {P \to Q} \to \mathbf{i} \end{array} \qquad \frac{P \quad P \to Q}{Q} \to \mathbf{e}$$

- [P] は論理式 P の一時的な仮定を表す
 - 仮定は推論規則(この場合は→i)の適用で消費される
 - 仮定は証明木の葉に出現する

ワトウェアモデル論(2010/11/29)

p→(q→r)⊢p∧q→r の証明

$$\frac{ \frac{[p \wedge q]}{q} \wedge \mathbf{e}_2 \quad \frac{\frac{[p \wedge q]}{p} \wedge \mathbf{e}_1}{q \to r} \to \mathbf{e}}{\frac{r}{p \wedge q \to r} \to \mathbf{e}}$$

/フトウェアモデル論(2010/11/29)

p∧q→r⊢p→(q→r) の証明

$$\begin{aligned} & \frac{[p]_1 \quad [q]_2}{p \wedge q} \wedge \mathbf{i} \\ & \frac{p \wedge q \rightarrow r}{r} \rightarrow \mathbf{e} \\ & \frac{q \rightarrow r}{p \rightarrow (q \rightarrow r)} \rightarrow \mathbf{i}, 2 \end{aligned}$$

ソフトウェアモデル論(2010/11/2s

選言に関する推論規則

$$\frac{P}{P \vee Q} \vee \mathbf{i}_1 \qquad \frac{Q}{P \vee Q} \vee \mathbf{i}_2 \qquad \frac{P \vee Q}{R} \vee \frac{[P]}{R} \vee \mathbf{e}$$

ソフトウェアモデル論(2010/11/29

否定に関する推論規則

$$\frac{\perp}{P} \perp e \qquad \vdots \qquad \frac{P \neg P}{\perp} \neg e$$

- 」は矛盾を表す
- 矛盾からはどのようなことでも推論できる
- 矛盾が導出された場合は前提が間違っている

/フトウェアモデル論(2010/11/29)

¬¬i の導出

 P⊢¬¬Pは¬¬iではなく別の推論規則を使って 以下のように導出可能

$$\frac{P \quad [\neg P]}{\bot} \neg e$$

ソフトウェアモデル論(2010/11/29)

派生規則

- 他の推論規則を使って導出可能な推論規則
 - 証明済みの派生規則は推論規則の一つとして使ってよい
- 例えば
 - ¬¬i
 - MT(modus tollens: 後件否定)
 - PBC(proof by contradiction: 背理法)
 - LEM(law of excluded middle: 排中律)

ソフトウェアモデル論(2010/11/29)

MT

$$\frac{P \to Q \quad \neg Q}{\neg P} \, \mathrm{MT}$$

• 証明

/フトウェアモデル論(2010/11/29)

PBC

$$\begin{array}{c} [\neg P] \\ \vdots \\ \hline P \\ \end{array}$$
 PBC

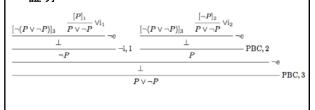
• 証明

ソフトウェアモデル論(2010/11/29)

LEM

$$\overline{P \vee \neg P} ^{\, \mathrm{LEM}}$$

• 証明



矛盾

- 論理式集合 Φ から \bot が導出できる場合、 Φ は 矛盾
 - $-\,\Phi\vdash\bot$
 - 任意の解釈について、Φ に含まれるすべての論理 式が真にならない
- 矛盾でない場合、無矛盾

/フトウェアモデル論(2010/11/20)

矛盾の性質

- Φ は矛盾
- 任意の論理式 P に対して Φ⊢P
- Φ⊢P かつ Φ⊢¬P なる論理式 P が存在する

/フトウェアモデル論(2010/11/29)